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ABSTRACT
The Kepler–Heisenberg problem is that of determining themotion of a planet around a sun in the sub-
RiemannianHeisenberg group. The sub-RiemannianHamiltonian provides the kinetic energy, and the
gravitational potential is givenby the fundamental solution to the sub-Laplacian. This system is known
to admit closed orbits, which all lie within a fundamental integrable subsystem. Here, we develop a
computer program which finds these closed orbits using Monte Carlo optimization with a shooting
method, and applying a recently developed symplectic integrator for nonseparableHamiltonians. Our
main result is the discovery of a family of flower-like periodic orbits with previously unknown symme-
try types.We encode these symmetry types as rational numbers and provide evidence that these peri-
odic orbits densely populate a one-dimensional set of initial conditions parameterized by the orbit’s
angular momentum. We provide links to all code developed.

1. Introduction

In geometric mechanics, one usually constructs a dynam-
ical system on the cotangent bundle of a Riemannian
manifold (M, g) by taking a Hamiltonian of the form
H = K +U , where the kinetic energy K is determined
by the metric g and the potential energy U is chosen to
represent a particular physical system. In particular, the
classical Kepler problem has been extensively studied in
spaces of the constant curvature; see [Diacu et al. 12]
for a thorough history. In [Montgomery and Shanbrom
15], we first posed the Kepler problem on the Heisenberg
group in the following manner.

Let (H,D, 〈·, ·〉) denote the sub-Riemannian geome-
try of the Heisenberg group:

� H is diffeomorphic to R3 with usual global coordi-
nates (x, y, z)

� D is the plane field distribution spanned by the vec-
tor fields X := ∂

∂x − 1
2y

∂
∂z andY := ∂

∂y + 1
2x

∂
∂z

� 〈·, ·〉 is the inner product on D which makes X and
Y orthonormal; that is, ds2 = (dx2 + dy2)|D.

See [Montgomery 02] for a detailed description of this
geometry.

We define theKepler problemon theHeisenberg group
to be the dynamical system onT∗H = (x, y, z, px, py, pz)
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with Hamiltonian

H = 1
2 ((px − 1

2ypz)
2 + (py + 1

2xpz)
2)︸ ︷︷ ︸

K

− 1
8π

√
(x2 + y2)2 + 16z2︸ ︷︷ ︸

U

.

The kinetic energy is K = 1
2 (P

2
X + P2

Y ), where PX =
px − 1

2ypz and PY = py + 1
2xpz are the dual momenta to

the vector fieldsX andY ; the flow ofK gives the geodesics
inH. The potential energyU is the fundamental solution1

to the Heisenberg sub-Laplacian; see [Folland 73].We use
the notation q = (x, y, z) so a solution to this system can
be expressed as q(t ).

In [Montgomery and Shanbrom15], we analyzedmany
properties of the resulting system and proved that the
dynamics are integrable on the invariant hypersurface
{H = 0}. We also showed that any closed orbits must
lie on this hypersurface. The Kepler–Hesienberg sys-
tem is at least partially integrable, in that both the total
energyH and the angularmomentum pθ = xpy − ypx are
conserved. Moreover, the quantity J = xpx + ypy + 2zpz
generates the Carnot group dilations in T∗H, which are
given by
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Figure . Closed orbits with k-fold rotational symmetry for k = 9, 41, 4, 8. In these figures and those following, the black dot represents
the origin and all orbits are projected to the xy-plane. The z-coordinate is equal to the area traced by this projection.

δλ(x, y, z, px, py, pz) = (λx, λy, λ2z, λ−1px, λ−1py, λ−2pz)

for λ > 0. It always satisfies J̇ = 2H and is therefore con-
served in closed orbits, for which H = 0.

In [Shanbrom 14], we proved that closed orbits exist.

Theorem1.1 ([Shanbrom14]). For any odd integer k ≥ 3,
there exists a periodic orbit with k-fold rotational symmetry
about the z-axis.

While crude numerical approximations were given in
[Montgomery and Shanbrom 15] and [Shanbrom 14],
these were literally found by guessing, and the images
were unsatisfactory as the orbits did not actually close
up. Moreover, Theorem 1.1 only provides existence—
there was no way to find these orbits in order to further
analyze their properties. Even worse, Theorem 1.1 was
only proved for odd k. The original goal of the present
work was to address these two inadequacies. Here, we
develop a Python program for finding numerical approxi-
mations to periodic orbits enjoying k-fold rotational sym-
metry for any k > 1, even or odd. We also discover more
intricate symmetry details; there are in fact ϕ(k) many
symmetry classes for any fixed k, where ϕ denotes Euler’s
totient function. See Section 3.

Main Numerical Discovery. Let j and k be positive
integers, and let ω = exp(2π i/k) be the generator of the
cyclic group Zk, acting on R3 by rotation about the z-
axis by 2π/k rad. Then, we have numerically discovered
a large number of solutions to the equation

q(t + T/k) = ω jq(t ). (1–1)

In [Shanbrom 14], we proved this result in the case
j = 1 and k odd, with essentially no pictures of the cor-
responding solutions. Figure 1 shows orbits with k =
9, 41, 4, 8 and j = 5, 6, 1, 7, respectively. They were all
found using random initial conditions, then the optimiza-
tion procedure described in Section 2.1.

2. Implementation

We use the recently developed symplectic integrator for
nonseparableHamiltonians, as described in [Tao 16]. This
builds on an innovative algorithm developed in [Pihajoki
15], which was first to consider a symplectic leapfrog
method for nonseparable Hamiltonians by mixing coor-
dinates in extended phase space. The method in [Tao 16]
imposes an additional constraint which binds the two
copies of phase space, resulting in improved long time
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Figure . This orbit was found using our search procedure (Section .). The top row represents a quasi-periodic orbit with random
initial conditions, the bottom row is its periodic neighbor. The data in the columns are described in (). The bottom right plot shows the
objective function decreasing over  iterations of step ().

performance without loss of symplecticity. We combine
this integrator with our own shooting method for finding
closed orbits. See Figure 2 for an example of a successful
search.

2.1. Programdescription

Roughly, the purpose of our program is to input a choice
of initial condition and output a closed orbit with nearby
initial conditions. Note that:

� The original choice of initial condition,whichwe call
the starting initial condition, must satisfy H = 0.

� The symmetries of our system allow the user to sim-
ply enter two (of six) coordinates, px and py, if she so
chooses. See Section 2.2

� Alternatively, one can generate random initial con-
ditions (with H = 0) by simply inputting an inte-
ger seed for our (psuedo-)random number genera-
tor. This is our search feature.

Our program follows four main steps.
1. Input starting initial condition X0 = (x(0), y(0),

z(0), px(0), py(0), pz(0)). As noted above, there
are three options here: choose all six, choose just
px and py, or choose randomly.

2. When using search, the program first deter-
mines whether the random starting initial con-
dition is close enough to that of a closed orbit
(if the starting initial condition is chosen manu-
ally, this step is skipped). We define the objective

function, ob j, for our optimization problem to be
the smallest local minimum of the (Euclidean)
distance squared from X0 in phase space; this
choice makes our approach a shooting method.
Setting a threshold of ob j < 0.1 effectively defines
a small neighborhood around X0. We employ the
symplectic integrator in [Tao 16] to integrate the
random starting initial condition for some small
time. If the resulting curve leaves and returns to
this neighborhood, this X0 is satisfactory and we
proceed to step (3). Otherwise, we increase the
time and repeat. If the orbit never returns to the
neighborhood within some set time threshold,
then we abort and save the curve in a directory of
failures called abortive.

3. Once a starting initial condition X0 has been
deemed satisfactory, we use aMonte Carlomethod
to optimize the objective function above. Use
a radially symmetric distribution defined on an
annular neighborhood centered at X0 (we used an
outer radius of 10−1 and an inner radius of 10−12).
Randomly pick a point in this distribution as a
new initial condition. Integrate the dynamics using
the symplectic integrator (for the same time as for
X0) and evaluate the objective function along this
curve. If this new evaluation is not less than the
previous value, repeat with a new random point
from the distribution. If the objective function did
improve, repeat step (3) with this new initial con-
dition; this is the update step. Iterate this procedure
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until a specified number of points have been tested
(we used 100–1000 iterations).

4. The output is an array of figures, where the user
can specify which of the following curves are to
be plotted for both the starting curve and the opti-
mized curve:
i. The curve in configuration space projected to
the xy-plane. This is the best representation of
the periodicity and symmetry of the orbit.

ii. The z-coordinate over time. This is always
qualitatively sinusoidal and can be recovered
from the projected curve according to the sub-
Riemannian structure.

iii. The objective function over time, which has a
minimum where the orbit closes.

iv. The objective function with respect to the
number of optimization method iterations.

Other options are available to the user as well, includ-
ing plots of H and J over time. The program also outputs
a binary file with all generated data as well as a human-
readable summary file. And we developed both random
and uniform sampling to search within specified regions
of phase space; this was used to generate the images in
Figure 6. Details can be found in [Dods 17].

2.2. Reduction of sample space

Ostensibly, our initial conditions could lie anywhere in
T∗H ∼= R6. However, we can narrow our search to an
embedded two-dimensional submanifold as follows. We
use basic results about the system, which appear in
[Montgomery and Shanbrom 15].

1. By conservation of the angular momentum
pθ = xpy − ypx, we can assume y = 0.

2. All orbits must satisfy the sub-Riemannian (hori-
zontal) constraint ż = 1

2 (xẏ − yẋ). Integrating this
condition and applying Green’s theorem forces the
z-coordinate to equal the area traced out by the
projection of the orbit to the xy-plane. Since we are
looking for closed orbits, the z-coordinate must be
zero at some time, which we can take to be the ini-
tial time; we thus impose z = 0.

3. Recall that J = xpx + ypy + 2zpz is conserved in
closed orbits. Utilizing this dilational symmetry
(which does not exist in any homogeneous Rie-
mannian manifolds besides Euclidean spaces), we
can set x = 1. Note that a choice of x = 0 is imper-
missible since (0, 0, 0) represents the Sun, where
our potential energy is singular.

4. Finally, since closed orbits have zero energy, we
can solve H = 0 for pz, obtaining pz = −2py ±√

1−4π p2x
π

, which has a real solution if |px| ≤ 1
2
√

π
.

In the following, we use the positive square root
in the expression for pz, but we analyzed the other
solution as well and found nothing different (mod-
ulo dilation and rotation).

The first and third of these are versions of symplec-
tic reduction. We thus restrict ourselves to searching for
initial conditions within the embedded (non-compact)
surface parameterized by (px, py) with |px| ≤ 1

2
√

π
. To

be clear, the constraints x = 1 and y = z = 0 are only
imposed on the initial condition, not the entire curve.

3. Results

3.1. Main result

Our primary finding is the existence of a family of peri-
odic solutions to the Kepler–Heisenberg problem, param-
eterized by rational numbers j/k ∈ (0, 1], which we call
the symmetry type of the orbit. The surprisingly beautiful
trajectories are displayed in Figures 1 and 7.

Main Numerical Discovery. Let j and k be positive
integers, and let ω = exp(2π i/k) be the generator of the
cyclic group Zk, acting on R3 by rotation about the z-
axis by 2π/k rad. Then, we have numerically discovered
a large number of solutions to the equation

q(t + T/k) = ω jq(t ). (3–2)

While this result is experimental in nature, the exis-
tence of these orbits can be proved using the methods
of [Shanbrom 14]. Indeed, the variational proof goes
through essentially unchanged if one replaces the symme-
try conditions (S1) and (S2) in [Shanbrom 14] by condi-
tion (1–1) above.

3.2. Experimental approach

Our original goal was to find numerical approximations
to the orbits whose existence was assured by Theorem 1.1.
The proof of this theorem gives no clue as to the location
or the initial conditions of the orbits that it asserts exist.
This motivated our choice to design a search using ran-
dom initial conditions, and trying to close up the orbits
which seemed quasi-periodic. See the first row of Figure 1
for examples with k = 9 and 41.

Our second goal was to find evidence of new closed
orbits, if they exist. Theorem 1.1 was only proved for
orbits with k-fold symmetry for odd k. Our search yielded
orbits with even degrees of symmetry as well; see the
second row of Figure 1 for examples with k = 4 and 8.
Moreover, we found that with a fixed k, there are ϕ(k)
many different classes of closed orbits (not just related
by symmetries of the system), where ϕ denotes Euler’s
totient function. Details appear below in Section 3.3. We
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Figure . Left: an example of a closed orbit with no rotational symmetry; the projection to the xy-plane exhibits two-fold rotational sym-
metry, but the z-coordinate does not. Right: symmetry type 1/2.

Figure . Points in a region of the pθ , J-plane. Colors represent values of the objective function,with red corresponding to large values and
blue corresponding to small values. Yellow regions lying along the line J = 0 represent initial conditions nearby those leading to closed
orbits.

also found a closed orbit without rotational symmetry. It
appears in Figure 3 and as an outlier in Figure 6.

While we first discovered these phenomena using our
search feature (see Section 2.1), which begins with
randomly generated initial conditions, further investi-
gation revealed a surprising and beautiful structure. As
described in Section 2.2, we reduced our search to two
dimensions, which we chose to be px and py. Due to
our choices that x(0) = 1 and y(0) = z(0) = 0, we have
px(0) = J and py(0) = pθ . Recall that closed orbits must
satisfy H = 0, and that this condition implies that J is an
integral of motion. Therefore, the two conserved quanti-
ties J and pθ completely determine a trajectory’s motion.

We uniformly sampled 2,500 points in a region of
this plane and generated the scatter plot in Figure 4.
The accumulation of yellow regions (signifying proxim-
ity to closed orbits) along the line J = 0 suggested that
we implement this constraint as well. This choice can

be justified as follows. Recall that J represents the dila-
tionalmomentum of an orbit, and it is conserved for closed
orbits. If J 
= 0, then the orbit cannot be periodic (or even
bounded)—depending on the sign of J, it either spirals in
toward the sun or spirals out to infinity. See Figure 5 for
examples.

Uniformly sampling 1000 points within the line J = 0
with pθ ∈ (0, 1) generated the scatter plots in Figure 6.
The lower plot shows an orbit’s period as a function of pθ .
Each discrete piece corresponds to a particular symmetry
type, described below.

3.3. Analysis of symmetry types

We intended to search for orbits with k-fold rotational
symmetry about the z-axis. After finding a large number
of these, we noticed that there were multiple symmetry

Figure . Two examples of failed search procedures. Both show orbits with non-zero dilational momentum J, appearing as red points
in Figure . Both orbits are self-similar in unbounded time. Left: a quasi-periodic orbit with J < 0 spirals in toward collision with the Sun.
Right: a potentially -fold periodic orbit fails to close since J > 0, causing the orbit to dilate outward unboundedly.
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Figure . Uniformly sampled values of pθ ∈ (0, 0.4) along the horizontal axes in both plots. In the upper plot, local minima represent
symmetry types of periodic orbits. Introduced numerical thresholds obscure the fact that these are distributed densely like the rational
numbers. In the lower plot, each discrete piece represents a symmetry type of closed orbit. Its height represents its period. We understand
how these are distributed; see Section ..

Figure . Symmetry types 1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
4 , and

3
4 . We generated images of  different types.
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Table . As pθ grows, the symmetry types are exactly the reversed
Farey sequence–in this case, the Farey sequence of order .

≈ p
θ

.e– . . . . . . . . . . .

j
k

1
1

5
6

4
5

3
4

2
3

3
5

1
2

2
5

1
3

1
4

1
5

1
6

classes for a fixed k value, which we call the order of sym-
metry. For fixed k, the symmetry class is a positive inte-
ger j < k which is relatively prime to k. Qualitatively, if k
represents the number of lobes or petals in an orbit, then
j represents the order in which they are traced out over
time. Also see (1–1).

We call this ratio j/k the symmetry type of the orbit;
it is our main invariant of interest. We suspect that this
number is a complete invariant, in the sense that this
determines a closed orbit up to our rotational and dila-
tional symmetries. It seems nearly certain that j/k is
the usual rotation number from dynamical systems (see
Chapter 11 of [Katok and Hasselblatt 95] or Chapter 6 of
[Tabachnikov 05]), but we have not yet been able to for-
mally prove this.

In Figure 7, we show all ϕ(5) = 4 symmetry classes
for k = 5, as well as the ϕ(4) = 2 symmetry classes for
k = 4. Note that the orbits in Figure 1 have symmetry
types 5

9 ,
6
41 ,

1
4 ,

7
8 . In total, we have generated images and

data on over 175 different symmetry types.
There is a one-to-one correspondence between pre-

sented symmetry types and rational numbers in (0, 1].
As a function of angular momentum pθ , the symmetry
types are arranged according to the Farey sequence; see
Table 1. These symmetry types are observable in Figure 6.
In the upper plot, each local minimum corresponds to a
unique symmetry type. To generate this plot, we imposed
a maximum period of 200, as well as other constraints,
which account for the apparent finite number of minima.
In fact, the minima should densely populate the horizon-
tal axis like Q ⊂ R, with the corresponding symmetry
type decreasing as a function of angular momentum.

The lower plot in Figure 6 is most enlightening. Each
discrete piece represents a symmetry type (individual dots
are quasi-periodic orbits attracted to this symmetry type
by our program, there are 1000 samples). The piece in the
lower left corner represents symmetry type 1

1 ; this means
the orbit is periodic, but has no rotational symmetry. See
Figure 3.

The next lowest piece, with pθ ≈ .164, represents the
symmetry type 1

2 . The ray emanating up and left from
there, asymptotic to the vertical axis, consists of types k−1

k .
The ray emanating up and right from type 1

2 consists of
types 1

k . Directly above that lies the ray of types
2
k , and so

on. As all types are in reduced form, the structure in this
figure is therefore somewhat number theoretic in nature.

Our program can detect the symmetry type by using
basic Fourier analysis. Themodewith highest normof the

discrete Fourier transform of the z-coordinate as a func-
tion of time gives the symmetry order k. We compute the
discrete Fourier transform of the xy-curve, and the norm
of the complex Fourier coefficients gives a real-valued
function of the frequencies. We periodize this function
with period k by taking the average over each of the con-
gruence classes modulo k. The resulting discrete function
will have a maximum at j if the orbit has symmetry type
j
k . Our user has the option to plot this function, the class
signal, and the discrete Fourier transforms.

4. Conclusions

4.1. Open questions

Much work remains to be done. We would like to prove
that the closed orbits discovered here are indeed dis-
tributed as described in Section 3.3 There may be deeper
connections with rational rotation numbers and Arnold
tongues. Also, an investigation of the knot theory of the
orbits we have discovered would also be interesting, espe-
cially with respect to the symmetry types. And the obvi-
ous question remains: Have we found all of the periodic
orbits, or are there others outside the families described
here?

For the general Kepler–Heisenberg problem, we still
do not know whether the system is integrable outside
of the H = 0 subsystem. Partial answers are given in
papers like [Fiorani et al. 03], which develop “generalized”
action-angle coordinates for partially integrable systems,
but whether our system is completely integrable remains
unknown.

4.2. A failed attempt

While many of our early attempts at this project ended in
failure, one promising approach is worth noting despite
our lack of success. Our initial efforts were based on the
methods of [Nauenberg 01, Nauenberg 07], which use
techniques from Fourier analysis. We attempted to take
advantage of the variational formulation and work within
the Lagrangian formalism. The sub-Riemannian struc-
ture on the Heisenberg group allows one to parameterize
the optimization problem in terms of a single complex-
valued curve, the Fourier decomposition of which lends
itself to a particularly simple expression of the symmetry
conditions. Our approach was roughly as follows.

1. Input Fourier coefficients with symmetry for the
plane curve (x, y).

2. Construct z = periodic + linear. Let Q be propor-
tional to the linear part of z. WantQ = 0 so z peri-
odic.

3. Reconstruct parameterized space curve.
4. Compute action of path.
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5. Let A = action + λQ be the constrained action.
Want critical point of A.

6. Minimize norm of∇A as function of Fourier coef-
ficients and λ.

7. Output solution to equations of motion with pre-
scribed (x, y) symmetry and periodic z.

While this approach was conceptually attractive, it was
surprisingly difficult to implement. In [Nauenberg 01,
Nauenberg 07], configuration space is two-dimensional.
The complications added by our third dimension—large
numbers of composed functions and constrained opti-
mization in relatively high dimension—led us to abandon
this idea for the simpler approach described above. The
interested reader can find the discarded code in [Dods
17].

4.3. Codebase

All code used for the experiments and plots in this
work is hosted publicly as free, open-source software
at https://github.com/vdods/heisenberg. Explicit instruc-
tions to reproduce each plot in this article are provided
there, as are all relevant documentation and licensing
information. This code-publishing is an explicit effort to
conduct experimental mathematics such that all results
are 100% available and exactly reproducible.
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